根据三角函数的和差公式,我们有: $$\cos\left(\frac{\pi}{6} - a\right) = \cos\left(\frac{\pi}{2} + \left(a - \frac{\pi}{3}\right)\right) = -\sin\left(a - \frac{\pi}{3}\right)$$ 又因为:$\sin\left(a + \frac{\pi}{3}\right) = \frac{3}{5}$ 所以:$\cos\left(\frac{\pi}{6} - a\right) = -\sin\left(a - \frac{\pi}{3}\right) = -\sin\left(- \left(a + \frac{\pi}{3}\right)\right)$ 由于正弦函数是奇函数,即$\sin(-\theta) = -\sin(\theta)$。 因此,我们可以得到: $$\cos\left(\frac{\pi}{6} - a\right) = \sin\left(a + \frac{\pi}{3}\right) = \frac{3}{5}$$ 所以,$\cos\left(\frac{\pi}{6} - a\right)$的值为$\frac{3}{5}$。